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Abstract. We study the statics and long.time dynamics of a spin glass on a family of 
hierarchical lattices. The statics may be solved exactly on these lattices, and we treat the 
dynamics in a physically motivated low-temperature approximation, retaining only the 
slowest mode at each renormalization step. The results are generally i n  good agreement 
with Monte Carlo simulations in two and three dimensions. In particular, we find dynamical 
scaling at the spin glass transition i n  three dimensions, with a dynamical exponent 1 = 6.5. 
The spin autocorrelation function at T, decays like t-' with x =0.05. A new result for 
statics which is used i n  the dynamics calculation is that for the magnetic exponent yci, at 
the critical point, which is found to be 2.65. Above T,, the autocorrelation function can 
be fit in a wide intermediate time range by a Kohlrausch form, but in this model this is 
only a consequence of a crossover i n  the renormalization Row and has no fundamental 
dynamical significance. 

1. Introduction 

Fifteen years after the introduction of the Edwards-Anderson (EA)  model [ l ]  opened 
the door to the theoretical development of the problem, short-range spin glasses remain 
an unsolved problem. For a few years now, it  has been established that the three- 
dimensional ( 3 ~ )  king EA glass has a non-zero transition temperature T,, while the 
two-dimensional ( 2 ~ )  model does not. However, it is still not known whether the spin 
glass state below T, in three dimensions is a simple one, with a single thermodynamic 
phase (up to a global flip of all the spins) [Z], or whether it exhibits non-trivial broken 
ergodicity like the infinite-range model [3]. Even with the assumption that the spin 
glass state is a simple one, no full theory exists, only a scaling theory [2,4]. It is 
therefore very helpful to have some results on soluble models which may guide us in 
constructing theories for the EA model. 

In this paper we study a model of a shorr-range king spin glass defined on a 
hierarchical (Berker) lattice [5]. Its statics can be solved exactly at all temperatures. 
Here we study its dynamics approximately at low temperature. The exact static solution 
on the hierarchical lattice is the same as the Migdal-Kadanoff bond-moving approxima- 
tion [6,7] on a Euclidean lattice. Within this correspondence, we may make com- 
parisons with ZD and 3~ lattice EA models. 

The Migdal-Kadanoff approximation was shown a long time ago to give surprisingly 
good results for statics [8 ,9 ] .  Here we find within our approximation scheme that it 
is also very good for dynamics. Our work complements that of Bray and Moore [4] 
on the low-temperature phase; our focus is on T 3 T, in zero or small fields. 

t Present address: Depanamento de Fkica, Pontificia Universidade Cat6lica do Riode Janeiro, Rua Marques 
de S ~ O  Vincente 225, 22453 Rio de Janeiro, Brazil. 
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The qualitative features of the theory are already contained in a scaling theory 
proposed by McMillan [121. However, the scaling theory only gave qualitative results, 
not explicit values of correlation functions or critical exponents. In the present model 
we can calculate all such quantities exactly. We obtain critical dynamics in good 
agreement with Monte Carlo simulations in d = 2 and 3. By tuning the parameters of 
the model suitably, we can also study the interesting case corresponding to the lower 
critical dimensionality. 

A feature that arises not only in spin glasses, but also in a wide variety of other 
disordered systems, is anomalous relaxation. By this we mean relaxation which is 
neither simply exponential nor power-law in time, but something in between, often fit 
by the Kohlrausch form exp[-(f/~)’]]. It turns out that the spin autocorrelation function 
we calculate can be fit by such a form (at appropriate temperatures) over many decades 
of time. However, this form has no fundamental significance in the present model. We 
will see that it is just a consequence of a slow crossover between power law and 
ordinary exponential decay. 

Our model does not admit the possibility of non-trivial broken ergodicity (broken 
replica symmetry) [13]. Thus it may miss some important physics which recent simula- 
tions [14,15] suggest is present in 3~ spin glasses. However, in our view the current 
evidence on the existence of broken ergodicity is not conclusive because of possible 
large finite-size effects [4], so we find it still worthwhile to study the present model 
for insight about properties of spin glasses without broken ergodicity. 

2. The model 

We consider a short-range king spin-glass described by the Hamiltonian 

X= - 1 JyS,S, (1) 
( ‘ I )  

with S, = +1  and Gaussian random nearest-neighbour exchange interactions satisfying 
(the brackets [ I d v  denote the bond average) 

The spins occupy a hierarchical lattice (figure 1) generated by the iterated replacement 
of a single bond by n bonds arranged in n / 2  parallel ‘rungs’. The fractal dimensionality 
of the lattice is d,  = In n/ln 2.  Its geometry allows exact computation of the partition 

” 
SD so 

101 I b l  

Figure 1. The d = 2 hierarchical lattice is constructed by the iterated replacement of each 
bond in ( a )  by one cell, as shown in ( b ) .  The renormalization step corresponds to the 
inverse transformation, in which the cell id  replaced by an effective bond and the remaining 
spins have a new, slower, Rip attempt rate because of barriers within the eliminated cell. 
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function (for fixed J g )  by successive tracing over the different levels of spins in the 
hierarchy, starting from the last ‘generation’ and working back. For the random system, 
this renormalization procedure leads [SI to a nonlinear functional recursion relation 
for the effective bond distribution at a given length scale. 

We adopt a single-spin-flip (Glauber) model for the dynamics [ 161. Explicitly, the 
flip probability per unit time is 

where 

( S E ) ,  = 2S,  JUSi (4) 
j 

is the energy change for the flip Si + -St. 
At each renormalization step, there emerges a new timescale rI that plays the role 

in the dynamics of the system at the corresponding lengthscale that r0 plays in the 
original lattice. The ratio r,/rI-, is greater than 1, reflecting the hindrance to free 
flipping of the remaining spins due to their interactions with the spins eliminated at 
the previous step. 

Here we will always work within a low-temperature approximation, where ( 3 )  
becomes 

3. Renormalization procedure 

We start by reviewing the statics, that is the renormalization of the distribution of 
interactions J,, [8,9]. Referring to figure l (a ) ,  we have that when we trace out the 
last-generation spins (ones with only two bonds connected to them) each pair of bonds 
(e.g. JAC, jCR)  ‘in series’ combines to give an  eiiecrive bond (JAcRj according to 

tanh JacB = tanh JAC tanh JcB. (6) 

Then, the resulting effective bonds for the different parallel rungs add to  give the new 
total effective bond between the spins at the ends of the original cell. For example, 
for the case n = 4  ( d  = 2) shown in figure l ( a ) ,  there are two rungs to add up, and we 
get 

J’ = JACS + JAOS. (7) 

Now all the bonds that are combined in this way at the first renormalization step 
are drawn from the initial distribution of the model, which we take to be Gaussian, 
The dis:rib&x ef :he effec!ive bonds &!er renarm.!iza!ion is CO !anger Gacssia-. 
Following Southern and Young [9], we adopt Thouless’s suggestion and find the new 
distribution at each renormalization step in the following way: We start with a large 
number No of bond values sampled from the original distribution. We then take n of 
these at random and combine them as described above to get a renormalized bond. 
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Doing this No times give a sample of No values from the bond distribution at the first 
renormalization step. These numbers are then used in the same way to generate a 
corresponding sample of the distribution at the next step, and so forth. For large 
enough No we can calculate any desired averages as  averages over the sample distribu- 
tions, and the distributions themselves can be plotted out by making histograms of the 
sample bonds. I n  our calculations we have used No = 20 000. 

Now we turn to dynamics. After the last-generation spins have been eliminated, 
we have a new problem in which the spins of the next-to-last generation are the fastest 
degrees of freedom. Our task is to compute the effective spin-flip attempt rate, 7;' for 
these spins. These spins will be slower than the last-generation ones because they are 
not really free to flip with rate 70'. Their couplings to the last-generation spins create 
barriers which hinder their free flipping. Since the last-generation spins are no longer 
in the problem explicitly, we must take their effect into account by a suitable renormaliz- 
ation of the flip attempt rate. 

Actually, it is only an approximation to describe all the dynamical effects of the 
eliminated spins as a renormalization of the attempt rate. In general the eliminated 
spins have a spectrum of relaxation rates, and the exact renormalized dynamics should 
include the entire spectrum. What we de here is to keep systematically the slowest part 
of the dynamics at every renormalization step. At low temperatures, the slowest modes 
in the spectrum dominate exponentially, so we expect this single-parameter scaling to 
describe the dynamics in the long-time limit. 

Our theory is based on the assumption that the timescales associated with different 
length scales (renormalization steps) are well separated from each other (T !  >-) T~-~). We 
expect this to be a good approximation for temperatures well below the mean field 
transition temperature, where characteristic energies grow with increasing length-scale. 
In particular, it should give reasonable results even in the paramagnetic phase for 
dimensionaiities d near or below the iower critical dimension d) ,  as then the critical 
temperature is zero or small. For k ing  spin glasses, dr =2.6 [17, 181 permitting this 
approximation for d = 2 and d = 3. 

Despite the physical appeal of this approximation procedure, we have not been 
able to justify it rigorously as a low-T expansion. The problem lies in the following: 
because at  every renormalization step there is a distribution of relaxation modes, there 
is the possibiility that a mode which is thrown away at one step (because it is not the 
slowest a t  that step) is actually slower than one which is retained because it is the 
slowest one at a later step. We have not succeeded in bounding the error introduced 
in this way, even for the one-dimensional case. For the present, we are forced to regard 
our scheme as a heuristic one which we believe captures the correct physics of the 
problem at  low temperatures, though it may not be quantitatively exact. 

To compute the renormalized attempt rate, we examine in detail just how next-to- 
last-generation spins can relax. Consider, specifically, the pair of neighbouring last- 
generation cells formed by spins SA, s,, Sc, s,, s,, S, and S4 shown in figure l ( b ) .  
S,, S,, S, and S, are last-generation spins which are to be eliminated at this renormaliz- 
ation step. S, is the next-to-last-generation spin whose dynamics we are examining. 
SA and S13 belong to earlier generations and are effectively frozen on the timescales 
w c  ' l tG cnarlrrrrrr,g LICilC. 

Let us consider the relaxation of this system to equilibrium. On a timescale T ~ ,  SA, 
S1, and S, are all frozen and simply act, via the bonds within the last-generation cells, 
as sources of external fields acting on the last-generation spins S,, S,, S3 and S,. So 
the first thing that will happen is that these spins will line up along the net fields they 

. .  ... " " L..-,. 
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feel. The result of this alignment will be that if the fields coming from the two end 
spins (SA and SC for SI and S,, S ,  and S, for S3 and S,) are of opposite sign, a 
last-generation spin will follow the one associated with the stronger bond, leaving the 
other bond broken. Now this may or may not leave the two elementary cells in their 
lowest-energy states. In the present example, an unfrustrated cell (one with an even 
number of negative bonds) will be in its ground state if all its bonds are satisfied, and 
a frustrated cell (one with an odd number of negative bonds) will be in its ground 
state if only the weakest bond is broken. Examples of cells not in their ground states 
are unfrustrated cells with broken bonds in both the top and bottom rungs (since they 
cannot relax to their ground states without flipping an end spin) and frustrated cells 
where the broken bond is in the top rung, while the weakest bond of all is one of the 
bottom pair (or reversing top and bottom). 

On the next timescale, where these cells are replaced by bonds (which are calculated 
by the static renormalization procedure outlined above) S, can relax. It is sufficient 
for illustrative purposes to consider the case where, say the left-hand cell in figure 
l (b)  (containing S, and S,) is not in its ground state, while the right-hand cell 
(containing S, and S,) is, but the total energy would be lower if it were the right-hand 
one in its ground state instead. If we can flip S,, both cells will immediately relax to 
that lower-energy configuration. The question is, what is the barrier for flipping S,? 

One possibility is that SC can just flip, breaking any unbroken bonds and unbreaking 
any broken bonds connected to it. The barrier associated with this is just twice the 
sum of the (absolute values of the) bonds which are broken in the flip, minus the sum 
of those previously broken which are unbroken after the flip. 

Another possibility, however, is that S, or S2 (or both) might flip briefly, changing 
the state (broken or unbroken) of the bonds in the upper or lower rung (or both of 
them) in the left-hand cell, and then S, flips. Because the rate for this process will be 
suppressed by the small probability of these fluctuations, the effective total barrier will 
be correspondingly increased. On the other hand, the subsequent flip of Sc will be 
easier if the flips of S, and/or S2 happen to break bonds connected to S,, for then 
the flip of S, will change these bonds from broken to unbroken, thus lowering the 
energy associated with them. 

In general, then, we have to consider all possible sequences of flips of a set of 
spins consisting of the central spin (S,) and the spins in the cell of higher initial 
energy (here, S, and S I ) .  We can think of this process as moving a domain wall through 
the pair of cells. The total barrier for each such sequence is the sum of the activation 
energies V,  = max(SE,, 0) for these flips: 

v, = 1 Kr (8) 

where s labels the different possible sequences. We then compare the total barriers for 
different sequences and select the smallest one: 

V,=minV.. (9) 

At low temperatures, this path will dominate all others. The renormalized flip attempt 
rate is therefore 

7;' = 70' exp(-pv,). (10) 

Similarly, at every subsequent step, the relaxation time is multiplied by the inverse of 
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a factor like (lo), leading to 

71 = 7” exp(PAI) 

R Riera and J A Hertz 

where the total barrier after I steps is 
I 

A I =  V,. (12) 
m-1  

Thus we can think equally well in terms of a multiplicative renormalization of timescales 
or an additive contribution to the effective barriers at each renormalization step. 

Frustration can play an important role in the energies that come out of this 
computation, and consequently in the scaling of the characteristic relaxation times of 
the system. This is illustrated in figure 2.  It shows two different intra-cell bond 
configurations, in both of which the minimum coupling is J , ,  located at bond 1. Figure 
2 ( a )  shows the barrier calculation (8) for a sequence of spin-flips in the first bond 
configuration, where all the couplings are ferromagnetic (no frustration in the ground- 
state of the cell). Figure 2 ( b )  shows the barrier calculation for the same sequence of 
spin-flips in a second cell where all the bonds have the same strength as in ( a ) ,  but 
bond 1 is antiferromagnetic. Here, because of frustration, the ground state energy of 
the ceii is A& = iji,i higher than in the previous case. T i e  etiective barrier vs for the 
relaxation sequence shown in the figure is also higher in the second case. This illustrates 
how frustration can lead to higher barriers. 

- 
I 2 3 4 n.*.t. 

I 2 3 4 “...I. 

Figure 1. Illustration of the effect of frustration an  barrier calculations. Two different 
intracell band configurations are shown, one without and the other with frustration. The 
sequence of spin Rips is the same for bath cases. The ‘domain wall’ (dotted line) moves 
as the spins are Ripped (full circles). For simplicity, the twn intraeell bond configurations 
are taken to have I , = J , = . l , = J , = J , = J  and IJ,l=fJ. In ( a ) ,  J , > O ,  and there is no 
frustration in the ground state of the cell. In (b) ,  I ,  <O, and the ground state is frustrated, 
with bond I unsatisfied (wiggly line). Here the domain wall should be understood as 
relative to the ground state configuration, The energy is plotted for both cases against the 
number of spin Rips (nsf). At n s f = O ,  the energy corresponds to the ground state. The 
barrier V, for the given sequence of Rips is the sum of the positive energy changes after 
the wall was created by the Rip of the left-hand spin at nfs- 1. 
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The generalization to lattices with more than two rungs per cell is straightforward. 
We note two simplifying features. First, in considering different subsequences of flips 
of the internal spins during which the 'central spin' at one end of the cell ( S c ,  in our 
example) does not Hip, the order of flipping of the internal spins is irrelevant. This is 
because in the geometry of the present model, the flips of different internal spins just 
make independent contributions to the barrier. Second, once the central spin flips, the 
cell can relax to its ground state in a microscopic time (TJ. So only the Hips of internal 
spins before the flip of the central spin contribute to the barrier. 

Of course, since the interactions are random, the resulting barrier increases or 
timescale renormalizations will also be random, and we must study their distribution. 
We do this in the same way we follow the renormalization of the bond distribution in 
the static calculation-we construct many examples of pairs of adjacent cells from the 
bond distribution at the previous renormalization step, and for each one compute a 
VI. The list of these V,'s then provides a sample of the distribution of barrier increases 
at this step. 

With the above considerations, we state the complete step I of the dynamic 
renormalization procedure as: 

(i) Take the previous distributions of N values of exchange interactions P , - , ( J )  
and barriers G,-,(A). 

(ii) Choose randomly n values from the bond distribution to construct one cell at 
the last remaining generation. (In the case of the cell of figure 1, n =4.) 

(iii) Find the renormalized interaction J, by the standard real space renormalization 
procedure outlined above. 

(iv) Choose randomly 2n values from the interaction distribution to construct a 
pair of adjacent cells in the last remaining generation. 

(vi Fixing the spins ai the ends of the cells randomiy, find their minimum-energy 
configuration. Compute the path barriers for all possible sequences of Hipping the 
central spin and the internal spins in the cell of higher energy according to (8). Then 
the smallest of these (9) will give one value for the effective barrier increase V, at this 
step. 

(vi) Choose (randomly) one value of AI- ,  from the previous barrier distribution. 

( 1 3 )  

(vii) Repeat the previous items N times to obtain the renormalized distributions 
P , ( J )  and G,(A), which will be used as starting distributions in the next KG step 

The only approximation present so far is the one mentioned above: keeping only 
one characteristic time (the longest) in the true renormalized dynamical spectrum at 
every renormalization step. (The non-zero width of the barrier distribution obtained 
in our procedure comes about because of the quenched randomness of the system.) 
As argued there, this should be a good approximation for long times at low temperature. 
In particular, the shape of the resulting barrier distributions should (if calculated 
correctly) lead to the long-time limiting form of correlation functions characteristic of 
the C.riffi!hs phase [IO!; (This is analogous to the case of the static Griffiths singularitiep 
as a function of field described by Grinstein et a1 [ 1 1 3  for the spin glass chain.) 

The starting interaction distribution (2) remains symmetric through the successive 
rescalings, and the static properties are obtained from the scaling behaviour of the 
width of the distribution [ S I .  The critical temperature T, is characterized by an unstable 
fixed point exchange distribution P * ( J ) .  At Tx, there is also a fixed point distribution 

......_.._.,:_.1 L---:-- _ _ . : I ,  L^ -: L.. 
I n c .  rrrlUllllallLCU "alllc, W l l l  "C glvolr vy 

A, = AI- ,  + V,. 
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of barrier increments VI, leading to  effective growing harriers A, (12) with a distribution 
increasingly narrow relative to its mean as the length scale is increased, 

This is also approximately the case above T, when the correlation length f >> 1, i.e. 
as long as there are many RC steps before the barrier saturates at a scale L = 2'= f 
(where JI or V, =O). The dynamic properties will then he dominated by the scaling 
properties of the mean of the harrier distribution. In this paper, we will make the 
further approximation (in addition to that mentioned above) of ignoring fluctuations 
around the mean, replacing V, by its mean VI at each step. Thus, at Tz, 

R Riera and J A Hertz 

TI a (exppV*/) (14) 

where V* is the mean of the fixed point distribution of harrier increments. Away from 
Tz we have, correspondingly, 

where v, is the average barrier increment at step m. 
Because of this last approximation, we can never hope to see the Griffiths-phase 

long-time limiting form of the correlation function in our subsequent calculations. 
Thus we have to qualify our claim to a good long-time theory with the proviso 'apart 
from effects of Griffiths singularities'. We expect these effects to he very small, however, 
in the region near T, which we are most interested in, because there the mean effective 
barrier is much larger than its fluctuations. 

Although the dynamics is governed by the scaling of the harrier distribution, the 
change V, depends on the exchange distribution at the previous level I -  1 For that 
reason, the dynamic transition will always occur at the critical point for statics, in 
i'bnir.si io the iesu;ts of Kuiasov 
distribution of couplings. 

[18j for :jing &ain . ~ , i h  2 hiirarchicai 

4. Results for hierarchical lattices 

We cofisidcr the hierlrchica! !a!tices gm!r.t.d by !hP iterated suhn!i!u!ion of a single 
bond by a generator with n bonds and n / 2  rungs, as in figure 1. In addition to n = 4  
(corresponding to d = 2 )  and n = 8 (corresponding to d = 3 )  we can do calculations 
for non-integer dimensions. For example, the case n = 6 ( d  = 2.58) is particularly 
interesting because it is very close to the lower critical dimensionality. 

We have worked with distributions of N = 20 000 values and followed the Row of 
the distributions of effective exchange interactions and energy barriers through rescal- 
ing. For T+O, the exchange distribution approaches a fixed shape with a length- 
dependent scale ( b  = 2) :  

PI(./) = b-YoPl_,(b-~vOJ) (16) 

J I  r - - U L."" ',,-I. r !!7! 
with the width of the distribution scaling as ( $ = [ J : ] , 3  - - 
We find exponents y,=-O.27 ( n  =4,  d , = 2 ) ,  yo=0.04 ( n = 6 ,  d,=2.58) and ~ ~ ~ 0 . 2 5  
(n = 8, d, = 3 ) ,  in agreement with the results of Bray and Moore [ 171 for these lattices. 

Fl( V) = b-"Oy(b-YOIV). (18) 

We also obtain for the distribution of harrier increments V, at T+O 
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The mean scales like 

= bVOVl,_, (19) 

with VI = [V,]." computed as the average of (9) over all N intra-cell bond configurations 
generated at step 1. The exponents yo are the same as in (16) and (17), because VI 
depends only on the intra-cell bonds that are sampled from the interaction distribution 
(16) at the previous level I - I .  Figure 3 shows the zero-T scaling function f in (18) 
for d = 2  and d = 3 .  

There is no spin-glass order for finite T in d = 2 ( y o  < 0). Near T, = 0, we can add 
increments (19) as in (15) until the barrier saturates at the value A- for /=logb 5. We 
then have 

(A, - A,) = b"(A, - AI-,)  (20) 

or, equivalently, with L= b': 

A--A(L)-L'O. (21) 

That is, in d = 2  as T+O the barriers saturate at large scales, approaching Am with the 
zero-temperature exponent yo [12]. The saturation value depends linearly on tem- 
perature, while the width of the barrier distribution stabilizes at a fixed value, as shown 
in figure 4. The zero-temperature saturation value is A m =  l5J, in qualitative agreement 
with cluster-quench simulations [20] which gave Am= 121. 

For d = 3,  T, > 0, and the spin-glass phase is governed at large length scale L by 
the T = 0 fixed point interaction distribution. In this limit, the last contribution VI to 
A, in (15) dominates, so the energy barriers scale with the same (30) exponent yo as 
the interactions 

A( L )  = A( T)Ly". (22) 

This means that for this model the exponent T introduced by Fisher and Huse [2] is 
equal to y,. 

The lower critical dimension is characterized by a zero-temperature exponent yo = 0. 
This case was approximated within the present model as follows. We started with the 
case n = 6 (like figure 1 but with three rungs instead of two, and dimension d, = 2.58). 
It is almost at lower critical dimensionality, but has a slightly positive yo .  We retarded 
the flow of the exchange distribution just enough to compensate for this, producing a 
fixed distribution by multiplying all the bonds found at each step by b-~'o. 

For T =  0, we find a temperature-independent value VI = 3.1 J for several RG steps 
before the correlation length is reached. This means that for a wide range of length 
scales the characteristic time (15) increases like 

~ ~ = ~ ~ e x p ( 3 . l p J l ) .  (23) 

This implies a breakdown of the conventional dynamic scaling relation 

T (  L )  - L' (24) 

since (with L=2')  the dynamic exponent 

3 . lpJ  
In 2 

z =-=4.5pJ 

is temperature-dependent. 
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Figure 3. Histogram of the rera.temperature scaling function f for the distribution of 
barrier increments V, (see text). I t  has 20000 values of rescaled barriers 2-""V, obtained 
at the Ith renormalization step. ( a ) :  d = 2 .  ( b ) :  d = 3 .  In (a) the peak at V,=O contains 
approximately 10% of the total number of barrier increments generated; in ( b ) ,  5%. 
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0.01 0.05 0. I T / J  

Figure 4. Plot of the mean (0) and width ( x )  ofthe  distribution of  barriers A,(T) for the 
d = 2  hierarchical lattice. The linear dependence at T - 0  of A,(T) is A,(T)= 
A,(O)- 18.3T with A,(O) = 14.65. 

Furthermore, by counting the number of RG steps 1, to achieve 7, = 0 at low 
temperatures, we obtain for the correlation length & = 2'5 a behaviour consistent with 
(see figure 5): 

5( T )  - ex~[(o.WJ)*l (26) 
in agreement with the scaling theory [12]. 

Ford = 3, the critical temperature obtained was TJJ = 0.86+0.01, and the thermal 
exponent y ,  = 0.36* 0.04. These results were obtained by following the flow of the 

'O t 
30 35 4 0  4 5  50 55  60 6 5  fs 

I 

Figure 5. Correlation length at the lower critical dimensionality. Plot of (51 J)' against 
number of renormalization steps JET necessary to reach the correlation length at low 
temperatures TS0.233.  The result is consislent with (5 lT) ' -  C = le, - I k 2 ,  with C = 
(1/0.23)*.  From l ~ J l ~ 2 , = 2 ' ~ r ~ ' % 2 ,  we obtain & ~ 2 " / T ' 2 0 r  &Kexp[(J/  J)'ln2]. 
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interaction distribution and agree with previous results for statics [8], where the thermal 
exponent was obtained assuming that the exchange distribution remained Gaussian 
through the rescalings. Apparently this is a good approximation. 

At Tz, (9) was evaluated at each step with intra-cell bond configurations sampled 
from the unstable fixed point interaction distribution. Then from (14) we obtain 

R Riera and J A Hertz 

at T,, while for T >  T, we get 

T( T )  = T-- ~~~x 5'. (28) 
Together, (27) and (28) indicate conventional dynamic scaling (24) with a dynamic 
exponent 

= v*/ T, !fi 2. (24) 
From the measured fixed point distribution F*( V), we find the mean V*= (3.9*OO.1)J. 
Using this result in (29), we obtain the value 

z = 6.5 + O . l  (30) 

in very good agreement with Monte Carlo simulations [21] where z = 6 . 0 + 0 . 8  was 
found. 

5. Dynamic correlation function 

In this section we consider the behaviour in the high temperature phase of the dynamic 
correlation function q ( t )  = [ ( S , ( O ) S , ( t ) ) ] , ,  (the brackets ( )  denote the thermal average). 
In  the limit f + m ,  q ( t )  is equal to the EA spin-glass order parameter for statics. This 
autocorrelation function can be written as [12] 

m 

q ( t ) =  p l d  exp(-t/T,) (31) 

where pI describes the fraction of active spins relaxing at a rate T ; ' ,  and pI is their 
effective magnetic moment. 

In the hierarchical lattices studied here, pI - 2-d', the fraction of sites which are 
traced over at step I of the renormalization. The magnetic moments pl at level I are 
obtained from the scaling exponent for the variance Ah of an infinitesimal random 
field applied to the system: 

Ahl =2YhAh,~-, (32) 

I = O  

01 

At T=O, yh = d and for a small T,, we expect a critical magnetic exponent slightly 
smaller than d. The explicit calculation of y,, for hierarchical lattices is given in the 
appendix. In particular, we find the value 

y,, = 2.65 (34) 

for d = 3 at the critical point. 
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Using the /-dependence of p I  and pI, 9(t) reads 

& I T  
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9( t ) x  1 2 - 1 ( d - Y h '  exp(-t/T1). (35) 
I=<, 

We now consider d = 3. At T,, using (27), we get 

where T;  is independent of 1. 

algebraic behaviour 
Transforming the sum into an integral and using steepest descent, (36) leads to the 

9(t)  OC ( T 6 /  (37) 

with 

Substituting the values of ych from (34) and t from (30) in (38), we obtain the critical 
exponent x = 0.05, in very good agreement with Monte Carlo results [21]. 

For temperatures above Tz, the behaviour of the effective harriers with length scale 
was followed numerically (see figure 6). Before the barriers saturate, we found two 
regimes. Initially (at short length and time scales), they behave like 

P A ,  = A (  T ) /  (39) 

0: 

T l - 2 ~ % , ( T ) = ~ ~ e A l T )  (40) 

with z.# = A( T)/ln 2, in analogy with expression (29) at T,. Steepest descent leads 
again to algebraic decay like (37), with an exponent x which is temperature-dependent 
through both yh and zCe. 
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In the second regime (intermediate timescales), we can make an  approximate fit 

p A , = B l n l + C  (41) 

or 

r,/r'aP (42) 

with ~ ' - 2 ' ~  being the initial timescale for this regime. Substitution of (42) into (35) 
leads to 

Applying steepest descent to (431, we obtain the Kohlrausch behaviour 

q ( f ) =  exp[-(f/~')'l (44) 

with a temperature-dependent exponent p =  1/(1 + B ) S  1, through the temperature 
dependence of B. 

Some kind of region characterized by (41) is always to be expected if we consider 
A as a function of U = In I instead of I. Then the initial (critical) behaviour is exponential 
in U, so the graph of A ( u )  curves upward for small U. Since it has to saturate at large 
U, it must go through an inflection point somewhere in between, and in this region a 
linear (i.e. logarithmic in I )  fit will be good. This region may not be very large in I, 
but due to the large dynamical exponent z, which sets the scale for variations of A 
with I, this can correspond to many decades oft .  Needless to say, however, the resulting 
Kohlrausch decay admits no interpretation in terms of particular special kinds of 
dynamical processes in the present model. 

For length scales greater than 6, the dynamics is governed by the slowest modes, 
which have r l=rs .  At such timescales we recover the usual long time exponential 
behaviour 

s ( t ) =  e x p ( - t / d  (45) 

The true long-time behaviour of q ( t )  in the presence of bond randomness exhibits 
effects of Griffiths singularities [lo]. As pointed out above, these can be described 
within our theoretical framework if the full barrier distribution is calculated exactly, 
but we have not done this here. Because we were most interested in the neighbourhood 
of the phase transition, we made the approximation (15), arguing that corrections due 
to the finite width of the barrier distribution should not be significant close to the 
critical point. While we have not tried to estimate the (presumably very long) time 
where the Griffiths-phase behaviour takes over, we note that there is no sign of such 
behaviour in the simulations with which we have compared our results [Zl]. 

We also computed directly the expression (35) for q ( t )  at T a  T8, with the exponent 
y,,(T) evaluated from (A7). Figure 7 shows examples of plots of q ( t )  which exhibit a 
crossover from the short-time power-law form to the intermediate-time Kohlrausch 
behaviour for T >  T,. The exponents extracted from such plots are shown in figures 
8 and 9 and agree with the steepest descent results (37), (44) and (45). The approximate 
linear variation of In In q with In f, which is the basis of the Kohlrausch fit, apparently 
works over a somewhat wider range than what we would expect from the width of the 
linear region in plots of A, against log I like figure 6(b). This should make US even 
more cautious about attributing fundamental significance to Kohlrausch law fits. 
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0 10 I 0.0 I 5.0 20.0 

log,, ( f / T O )  

Figure 7. Dynamic correlation functions q ( r )  for ( a )  T =  Tx=0.89J, ( b )  T = 0 . 8 J  ( c  and 
d )  T = l . O J .  ( a ) ,  ( b )  and ( e )  exhibit the algebraic behaviour q ( t ) a r P .  with x=0.054, 
0.04 and 0.073, respectively. I d )  shows the intermediate Kohlrausch behaviour q(r )cc 
e x p [ - ( r / ~ ) ~ ]  with 8= 0.06 (the straight line has slope 1 -p). Note that the timescales for 
t h i s r e g i m e ( 6 ~ l o g , , ( r / r ) ~  12)correrpondfothebarrierrange 1 4 ~ A l T s 2 8 o f f i g u r e 6 ( b ) .  

n.e erponen! x is in good zgreement with Mo.!e Car!$ si!n??!l!ionS [a!. The !ow 
/%values obtained are at least partially due to the failure of the low-temperature 
approximation in describing the larger length-scale effective spins in the paramagnetic 
phase because they are attained at higher temperatures along the RG process. Neverthe- 
less, the present theory gives the correct qualitative behaviour of q(  t )  for the intermedi- 
ate regime as well as the observed linear temperature dependence of p. 

Our results suggest a crossover between the first two regimes rather than the 
combined behaviour q(  f) - fCX exp - cIp suggested by Ogielski [21]. 

For the 2~ system, we also expect to find a crossover from linear barrier growth 
to saturation which can be fit by a logarithmic /-dependence. We have also verified 
that direct evaluation of the autocorrelation function ( 3 5 )  for n = 4 (d,  = 2) also permits 
a Kohlrausch fit for an intermediate time regime or temperature range like that shown 
Fnr +ha ~n m r a  in fianro 7( , f \  ...* ," .,.."* ... ..e">' .\-,. 
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Figure 1. (continued) 

6. Conclusions 

We have studied the low-temperature dynamics of a soluble short-range spin glass: 
the Gaussian king model on  a Berker lattice. The static properties are obtained exactly; 
for dynamics we are forced to an approximation in which only the slowest relaxation 
mode is kept at each renormalization step. While this is not exact (or even, to our 
knowledge, a systematic low-temperature approximation), the results resemble to a 
surprising degree those found in simulations of the corresponding model on a Euclidean 
lattice. We even find quantitative agreement for the characteristic exponents YO, Z, x 
and ych.  (Though the last of these is a statics exponent, it does not seem to have been 
calculated before.) 

Beyond exponents, we find that in the paramagnetic phase the autocorrelation 
function can be fit over a wide range of times by the popular Kohlrausch form. However, 
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Figure 8. Temperature dependence of the exponent x far the algebraic decay q(0a I-.' 
obtained with the present method [A). For comparison, we also plot the Monte Carla 
K S U l t S  [ZI] (0). 

* . a .  

0.4 1 . A 

0.1 0.5 1.0 1.5 
T - T: 

Figure 9. Temperature dependence of the exponent 6 in the Kohlrausch fit q [ t ) a  
e ~ p [ - ( r / ~ ) ~ I .  We plat ( A )  for our results and (0) for the Monte Carlo ones [ZI]. 

as we have explained, this is not a reflection of some particular glassy processes 
occurring on these timescales. It arises in this model simply from two facts: ( i )  There 
has to he a region in the neighbourhood of the inflection point in the graph of the 
renormalized barrier A as a function of In I where A varies approximately linearly with 
In 1. (ii) The slope dA/d In I =  I,.z,, (where I< is the value of I a t  the inflection point) 
happens to be, large. Thus a few decades of spatial scale correspond to many decades 
in time. 

We think'this result should encourage caution in the interpretation of data which 
can be fit by a Kohlrausch law. 

Not all our exponents are in agreement with the simulations. The Kohlrausch 
exponent fi  is much too small (though its linear temperature variation is qualitatively 
correct). It is hard to account for all of this discrepancy simply in terms of the gradual 
breakdown of the low-temperature approximation we have used throughout this treat- 
ment, because the largest relative error occurs at low T. Thus there could well be other 
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sources of Kohlrausch behaviour, present in the lattice model for which the simulations 
were done but absent in our hierarchical model, or even present in our model but 
neglected in our treatment. 

The thermal critical exponent yT in three dimensions (which we obtained in 
confirmation of the old work of Southern and Young [9] for statics) is also in strong 
apparent disagreement with the simulations. (We find Y = y;'= 2.8, while Ogielski [21] 
has Y = 1.3.) Indeed, a small value of y ,  close to the zero-temperature exponent yo 
(such as we find), is a naturai consequence of proximity to the lower criticai dhension-  
ality. The fairly low value of T, relative to its mean field value (TJ  T r F = 0 . 3 6 )  is also 
consistent with the idea that the 3~ model is close to lower critical dimensionality. In 
this light the much larger value of y ,  found in the simulations is something of a puzzle, 
suggesting that some new physics missed in the present model may be playing a major 
role in the real 3~ system. 

As we remarked in the introduciion, recent simuiations i i j j  (reported after most 
of our work was done) suggest the presence of broken ergodicity in the 3~ king glass. 
In this light, it would be desirable to construct soluble models similar to ours but 
which atlow many thermodynamic phases. This problem is under study. For the present, 
however, in view of the inconclusive nature of the present evidence, the extensive 
agreement between our results and dynamical simulations requires taking the model 
seriously. 
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Appendix: The magnetic exponent 

The effect of a random magnetic field applied to the system is obtained by adding to 
ihe namiitonian ( i  j 

We take the random field hi acting on a spin at site i with z, neighbours to be the sum 
of zi independent terms: 

where 

Thus the last-generation spins, which have coordination number 2, feel a total random 
field of variance A,,, the next-to-last feel a field of variance 2d-'Ah, and so on. This 
dependence is the natural generalization of that used in non-random hierarchical 
models [22]. 

Let us now examine the renormalization operation in the presence of these external 
fields. We begin, as always, by tracing over last-generation spins (like S, and S2 in 
figure I ( b ) ) .  A s  before, the resuit of each such iracing is a fXior iil the eikCtkX 
Boltzmann weight exp(-OH,) associated with the renormalized Hamiltonian. Again, 
as before, each such factor depends on the untraced spins at the ends of the cell (e.g. 
SA and S, in figure l ( b ) ) .  Writing this factor in the form 

. ,. .. 
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the difference between the zero- and finite-field cases is just that with the field 
HA,(SA, S,) contains terms linear in the spins: 

-HAc(SA, S , ) = J ' S , S = + S h A S , + S h , S , + ~ ' .  (AS) 

In this way, each of the traced-over spins adds a contribution Sh to the field acting 
on previous-generation spins at the ends of the cell. These contributions can be extracted 
from 

(A6)  -HAC(++)  + HA,( --)+HAC(+-) -HAC( -+) =46hc 

and similarly for Sh,. We can evaluate these terms simply from the result 

-PELc (SA,  Sr ) = In R (SA, S, ) = In 2 cosh p (JA, SA + J ,  .S, + h , )  (A71 

of tracing out a single spin S,. For small fields this gives 

6hc =fh,[tanh P(J,,,+J,.)+tanh p(JA,  -Jlc) l .  (AS) 

Hence the total field acting on S, after the renormalization step is the original one 
( A 2 )  ( 2 d  terms), plus 2" terms of the form (AS) (one for each bond connecting it with 
a traced-over spin): 

2" 

;=, h', = ( h Y ' + i h ,  tanh p y : " + f h ,  tanh py!!)) (A91 

where the yg' are the sums (differences) between the two bonds connected to the 
traced-over spins S, in the cells to the left and right of S,. All the terms in (A9) are 
independent, so the resulting variance is 

A:,=2d~'(l+[tanh2Py], ,)Al, .  (A101 

Thus the magnetic exponent (defined in ( 3 2 ) )  is 

In( 1 + [tanh' py].,,) 
In 2 

y,, = d - 1 + 

In the zero-temperature limit, this just reduces to the exact result y ,  = d. For d = 3 and 
T =  T, we evaluate numerically the average in ( A l l )  over the fixed point distribution 
P * ( J )  to obtain the value y,, =2 .65  used in section 5 .  
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